Система искусственного интеллекта будет определять успех фильма

Содержание

Скоро ИИ станет определять, какие фильмы будут снимать в Голливуде

ИИ ScriptBook правильно определил 22 из 32 фильмов Sony, которые провалились в прокате за последние годы.

Многие уже сейчас видят в ScriptBook и сходных ИИ-системах потенциал полностью разрушить существующую систему предварительной оценки фильмов, которая сейчас тратится на тестовые скрининги, фокус-группы и маркетинговые исследования.

Компания, основанная еще в 2015 году в Антверпене, создала инструмент, который анализирует текст сценариев и дает финансовый прогноз. Ну или как более велеречиво говорит ее создательница, Надира Азермаи, «наша миссия — устроить революцию в бизнесе по рассказыванию историй, сделать так, чтобы ИИ помогал продюсерам, дистрибьюторам, агентам и финансистам в оценке их рисков».

Облачная система используется уже сейчас, а еще в 2016 году Scriptbook получил инвестиции на 1,4 миллиона долларов.

ИИ работает следующим образом: в него загружают PDF-файл со сценарием, и уже через пять минут он дает детальный анализ проекта по следующим параметрам: предсказывает возрастной рейтинг, анализирует персонажей, указывает протагонистов и антагонистов, оценивает эмоциональность каждого персонажа, предсказывает аудиторию проекта, включая гендер и расу, а также дает оценку того, сколько возможный фильм наберет в прокате.

ScriptBook основан на алгоритмах машинного обучения, получил «тренировку» на 6500 уже существующих сценариев, а сейчас сам создает базы данных. ИИ определил успех уже существующих проектов с 84% точностью, то есть дал «зеленый свет» сценариям, которые реально набрали много денег, и это в три раза выше, чем сходный показатель у людей. Одна из идей использования подобного ИИ заключается как раз в том, чтобы подкрепить объективными данными различные интуитивные догадки относительно того или иного сценария.

Естественно, система не идеальна. При оценки возможного бокс-офиса фильма «Ла-ла Ленд» она предсказала ему сборы в районы 59 миллионов, хотя в реальности фильм набрал более ста миллионов (правда, ИИ принимал решение только по сценарию и о номинациях на «Оскар» не знал). Тем не менее, ScriptBook все равно дал проекту зеленый свет благодаря его небольшому производственному бюджету.

Как говорит Михель Руленс, один из программистов ИИ, «в эпоху MeToo ScriptBook может улучшить состояние гендерного равенства в фильмах. Программа может, например, заметить, проходит ли фильм тест, при котором по крайней мере два женских персонажа разговаривают не о мужчинах. Также он может замерять, как много в сценарии диалогов между двумя женщинами, между двумя мужчинами и между мужчинами и женщинами».

Азермаи признает опасения многих людей, касающиеся того, что технология может полностью убить творчество и креативность, но считает, что ее система – не тот случай: «ИИ наоборот отбросит фильмы, следующие определенным формулам. Он очень хорош для отбора по‑настоящему творческих фильмов, которые хорошо себя покажут финансово».

На чем основан подобный оптимизм, пока неясно, так как непонятно, почему система должна поощрять какие-то нововведения, если она будет основываться исключительно на показателях прошлых успехов.

Сейчас за анализ одного сценария компания просит 5000 долларов, но дает скидку клиентам, которые хотели бы оценить сразу несколько проектов.

10 самых важных вех в развитии ИИ на сегодняшний день

На протяжении своей истории, от первых рассказов Азимова про роботов до AlphaGo, у ИИ были взлёты и падения. Но на самом деле его история только начинается.

Искусственный интеллект пока ещё очень молод. Однако в этой области произошло уже много значимых событий. Некоторые из них привлекли внимание культуры, другие породили взрывную волну, воспринятую только учёными. Вот некоторые ключевые моменты, наиболее сильно повлиявшие на развитие ИИ.

1. Айзек Азимов впервые упомянул “Три закона робототехники” (1942)

Рассказ Азимова “Хоровод” отмечает первое появление в историях этого знаменитого фантаста «трёх законов робототехники»:

  1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред.
  2. Робот должен повиноваться всем приказам, которые даёт человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
  3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому или Второму Законам.

В рассказе «Хоровод» робот Спиди ставится в положение, в котором третий закон входит в противоречие с первыми двумя. Рассказы Азимова про роботов заставили задуматься любителей НФ, среди которых были и учёные, о возможности появления думающих машин. По сей день люди занимаются интеллектуальными упражнениями, применяя законы Азимова к современным ИИ.

2. Алан Тьюринг предложил свою «Игру в имитацию» (1950)


Алан Тьюринг описал первый принцип измерения степени разумности машины в 1950-м.

Предлагаю рассмотреть вопрос «Могут ли машины думать?» Так начиналась влиятельная исследовательская работа Тьюринга 1950 года, разработавшая систему взглядов для рассуждения о машинном разуме. Он задал вопрос о том, можно ли считать машину разумной, если она может имитировать разумное поведение человека.

Этот теоретический вопрос породил знаменитую «Игру в имитацию» [её позже назовут “Тестом Тьюринга” / прим. перев.], упражнение, в котором исследователь-человек должен определить, с кем он переписывается – с компьютером или человеком. Во времена Тьюринга не существовало машин, способных пройти этот тест, нет их и сегодня. Однако его тест дал простой способ определить наличие разума у машины. Также он помог сформировать философию ИИ.

3. Конференция по ИИ в Дартмуте (1956)

К 1955 году учёные всего мира уже сформировали такие концепции, как нейросети и естественный язык, однако ещё не существовал объединяющих концепций, охватывающих различные разновидности машинного интеллекта. Профессор математики из Дартмутского колледжа, Джон Маккарти, придумал термин «искусственный интеллект», объединяющий их все.

Маккарти руководил группой, подавшей заявку на грант для организации конференции по ИИ в 1956. В Дартмут-холл летом 1956 были приглашены многие ведущие исследователи того времени. Учёные обсуждали различные потенциальные области изучения ИИ, включая обучение и поиск, зрение, логические рассуждения, язык и разум, игры (в частности, шахматы), взаимодействия человека с такими разумными машинами, как личные роботы.

Общим консенсусом тех обсуждений стало то, что у ИИ есть огромный потенциал для того, чтобы принести пользу людям. Было очерчено общее поле исследовательских областей, на развитие которых может повлиять машинный интеллект. Конференция организовала и вдохновила исследования в области ИИ на многие годы.

4. Фрэнк Розенблатт создаёт перцептрон (1957)


Фрэнк Розенблатт создал механическую нейросеть в Корнеллской лаборатории аэронавтики в 1957

Базовый компонент нейросети называется “перцептроном” [это лишь самый первый и примитивный тип искусственного нейрона / прим. перев.]. Набор входящих данных попадает в узел, подсчитывающий выходное значение, и выдающий классификацию и уровень уверенности. К примеру, входные данные могут анализировать различные аспекты изображения на основании входных данных и «голосовать» (с определённым уровнем уверенности) за то, есть ли на нём лицо. Затем узел подсчитывает все «голоса» и уровень уверенности, и выдаёт консенсус. В нейросетях сегодняшнего дня, работающих на мощных компьютерах, работают миллиарды подобных структур, связанных между собой.

Однако перцептроны существовали ещё до появления мощных компьютеров. В конце 1950-х молодой психолог-исследователь Фрэнк Розенблатт создал электромеханическую модель перцептрона под названием Mark I Perceptron, хранящуюся сегодня в Смитсоновском институте. Это была аналоговая нейросеть, состоявшая из сетки светочувствительных элементов, соединённых проводами с банками узлов, содержащих электромоторы и поворотные резисторы. Розенблатт разработал «перцептронный алгоритм», управлявший сетью, которая постепенно подстраивала силу входных сигналов так, чтобы в итоге правильно идентифицировать объекты – по сути, обучалась.

Учёные спорили о значимости этой машины вплоть до 1980-х. Она сыграла важную роль по созданию физического воплощения нейросети, которая до тех пор существовала в основном только в виде научной концепции.

5. ИИ сталкивается со своей первой зимой (1970-е)

Большую часть своей истории ИИ существовал только в исследованиях. Большую половину 1960-х правительственные агентства, в частности, DARPA, вливали деньги в исследования и практически не требовали отчёта по инвестициям. Исследователи ИИ часто преувеличивали потенциал своей работы, чтобы продолжать получать финансирование. Всё изменилось в конце 1960-х и начале 1970-х. Два отчёта – один от рекомендательного совета по автоматической обработке языка (ALPAC) для правительства США 1966 года, второй от Лайтхилла для правительства Британии 1973 года – прагматически оценили прогресс в исследованиях ИИ и выдали весьма пессимистичный прогноз о потенциале данной технологии. В обоих отчётах ставилось под вопрос наличие ощутимого прогресса в различных областях исследований ИИ. Лайтхилл в своём отчёте утверждал, что ИИ для задач распознавания речи будет крайне сложно масштабировать до размеров, которые смогут быть полезными правительству или военным.

В итоге правительства США и Британии начали урезать финансирование исследований ИИ для университетов. DARPA, без проблем финансировавшее исследования ИИ в 1960-х, стало требовать от проектов чётких временных рамок и подробного описания предполагаемых результатов. В итоге стало казаться, что ИИ не оправдал ожиданий, и никогда уже не сможет достичь уровня человеческих возможностей. Первая «зима» ИИ продлилась все 1970-е и 80-е.

6. Приход второй зимы ИИ (1987)

1980-е начались с разработки и первых успехов “экспертных систем”, хранивших большие объёмы данных и эмулировавшие процесс принятия решений людьми. Технологию изначально разработали в университете Карнеги-Меллона для компании Digital Equipment Corporation, а затем другие корпорации начали быстро внедрять её. Однако экспертные системы требовали дорогого спеиализированного оборудования, и это стало проблемой, когда начали появляться сходные по мощности и более дешёвые рабочие станции от Sun Microsystems а также персональные компьютеры от Apple и IBM. Рынок экспертных компьютерных систем рухнул в 1987, когда с него ушли основные производители оборудования.

Успех экспертных систем в начале 80-х вдохновил DARPA на увеличение финансирования исследований ИИ, но вскоре это вновь поменялось, и агентство урезало большую часть этого финансирования, оставив всего несколько программ. И снова термин «искусственный интеллект» в исследовательском сообществе стал почти запретным. Чтобы их не воспринимали, как непрактичных мечтателей в поисках финансирования, исследователи начали использовать другие названия для работы, связанной с СС – «информатика», «машинное обучение» и «аналитика». Эта, вторая зима ИИ продолжалась вплоть до 2000-х.

7. IBM Deep Blue побеждает Каспарова (1997)


IBM Deep Blue победила лучшего шахматиста мира, Гарри Каспарова, в 1997.

Общественное представление об ИИ улучшилось в 1997 году, когда шахматный компьютер Deep Blue от IBM победил тогдашнего чемпиона мира Гарри Каспарова. Из шести игр, проводившихся в телестудии, Deep Blue выиграла в двух, Каспаров в одной, а три окончились вничью. Ранее в том году Каспаров победил предыдущую версию Deep Blue.

У компьютера Deep Blue было достаточно вычислительных мощностей, и он использовал «метод грубой силы», или полный перебор, оценивая 200 млн возможных ходов в секунду и подбирая наилучший. Возможности людей ограничиваются оценкой лишь порядка 50 ходов после каждого хода. Работа Deep Blue была похожа на работу ИИ, но компьютер не размышлял о стратегиях и не учился игре, как смогут делать последовавшие за ним системы.

И всё же победа Deep Blue над Каспаровым впечатляющим образом вернула ИИ в круг общественного внимания. Некоторые люди были очарованы. Другим не понравилось, что машина обыграла эксперта в шахматах. Инвесторы были впечатлены: победа Deep Blue на $10 подняла стоимость акций IBM, выведя их на максимум того времени.

8. Нейросеть видит кошек (2011)

К 2011 году учёные из университетов всего мира говорили о нейросетях и создавали их. В том году программист Джефф Дин из Google познакомился с профессором информатики из Стэнфорда Эндрю Ыном. Вдвоём они замыслили создание большой нейросети, обеспеченной огромной вычислительной энергией серверов Google, которой можно будет скормить огромный набор изображений.

Созданная ими нейросеть работала на 16 000 серверных процессорах. Они скормили ей 10 млн случайных и неразмеченных кадров с видеороликов YouTube. Дин и Ын не просили нейросеть выдать какую-то конкретную информацию или разметить эти изображения. Когда нейросеть работает таким образом, обучаясь без учителя, она естественным образом пытается найти закономерности в данных и формирует классификации.

Нейросеть обрабатывала изображения три дня. Затем она выдала три размытых изображения, обозначающих визуальные образы, которые она снова и снова встречала в обучающих данных – лицо человека, тело человека и кота. Это исследование стало серьёзным прорывом в использовании нейросетей и обучении без учителя в компьютерном зрении. Также оно отметило начало проекта Google Brain.

9. Джоффри Хинтон спустил с поводка глубокие нейросети (2012)


Исследование Джоффри Хинтона помогло возродить интерес к глубокому обучению

Через год после прорыва Дина и Ына профессор Торонтского университета Джоффри Хинтон с двумя своими студентами создали нейросеть для компьютерного зрения AlexNet для участия в соревновании по распознаванию изображений ImageNet. Участники должны были использовать свои системы для обработки миллионов тестовых изображений и определять их с наивысшей возможной точностью. AlexNet выиграла соревнование с процентом ошибок в два с лишним раза меньшим, чем у ближайшего конкурента. В пяти вариантах подписи к изображению, данных нейросетью, только в 15,3% случаев не было правильного варианта. Предыдущим рекордом было 26% ошибок.

Эта победа убедительно показала, что глубокие нейросети, работающие на графических процессорах, куда как лучше других систем могут точно определять и классифицировать изображения. Это событие, возможно, сильнее остальных повлияло на возрождение интереса к глубоким нейросетям, и заслужило Хинтону прозвище «крёстный отец глубокого обучения». Вместе с другими гуру в области ИИ, Йошуа Бенджио и Яном Лекуном, Хинтон получил долгожданную премию Тьюринга в 2018.

10. AlphaGo обыгрывает чемпиона мира по го (2016)

В 2013 году исследователи британского стартапа DeepMind опубликовали работу, где было описано, как нейросеть научилась играть и выигрывать в 50 старых игр от Atari. Под впечатлением от этого компанию купила Google – как говорят, за $400 млн. Однако главная слава DeepMind была ещё впереди.

Через несколько лет учёные из DeepMind, теперь уже в рамках Google, перешли от игр Atari к одной из самых старых задач ИИ – японской настольной игре го. Они разработали нейросеть AlphaGo, способную играть в го и обучаться во время игры. Программа провела тысячи партий против других версий AlphaGo, обучаясь на основе проигрышей и выигрышей.

И это сработало. AlphaGo обыграла величайшего игрока в го в мире, Ли Седоля, со счётом 4:1 в серии игр в марте 2016. Процесс снимали для документального фильма. При его просмотре трудно не заметить грусть, с которой Седоль воспринял проигрыш. Казалось, что проиграли все люди, а не только один человек.

Последние продвижения в области глубоких нейросетей настолько сильно изменили область ИИ, что реальная его история, возможно, только лишь начинается. Нас ждёт много надежд, шумихи и нетерпения, но сейчас уже ясно, что ИИ повлияет на все аспекты жизни XXI века – и возможно даже сильнее, чем в своё время это сделал интернет.

Современное состояние искусственного интеллекта

“Разумные компьютеры становятся безумными!”

“Машины решили, что все человечество должно быть уничтожено или порабощено!”

“Всемогущие роботы стали доминировать над человеческой расой!”

Это то, что мы думаем, когда кто-то произносит “искусственный интеллект”. Особенно в научной фантастике. Мы вспоминаем HAL 9000 из Космической Одиссеи 2001 года, который внезапно решил, что может делать все, что черт возьми он захочет. Терминатор или Альтрон и маниакальные фантазии о расе роботов убийц, одержимых стремлением уничтожить человечество. И не говорите мне о том, что в вашей голове никогда не проскальзывала мысль, что Матрица может быть реальной.

Искусственный интеллект в научной фантастике долгое время был предметом конфликта между человеком и машиной. Во многих отношениях, в этом нет ничего плохого. Люди и машины бок о бок проходили через многие исторические процессы; постоянное напряжение между живым и неживым приводило к взаимовыгодным результатам.

В научной фантастике существует тенденция представлять ИИ в качестве антропоморфных машин. Это один из самых незамысловатых приемов в литературе создать злодея. Дайте машине тело, голос, разум и способность управлять своими действиями. В большинстве случаев, это Макгаффин, раскрывающий наши собственные слабости и недостатки. Мне нравятся подобного плана истории. Я и сам написал их немало. Они служат для того, чтобы помочь нам исследовать нашу собственную природу с точки зрения особенностей, которые делают наш вид уникальным.

Но реже я встречал истории, в которых ИИ предстает тем, чем он является на самом деле… областью исследования компьютерных наук.

В этой статье мы взглянем на фундаментальные принципы искусственного интеллекта, его основные теории и перспективы, чтобы помочь другим авторам понять его истинную природу, потенциал и ограничения.

Откуда взялся ИИ?

Идея современного ИИ появилась из ранних работ с компьютерами в 30-х годах. Алан Тьюринг, основатель современных компьютерных вычислительных систем, заявил в основополагающей статье 1950 года, что теоретически возможно построить компьютер способный на мыслительные процессы. Тест Тьюринга стал де факто первым шагом в определении того, достиг ли компьютер уровня ИИ.

Идея теста заключается в том, чтобы проверить способность машины демонстрировать разумное поведение, которое эквивалентно или неотличимо от поведения человека. В общем виде, суть теста состоит в том, чтобы выяснить, сможет ли компьютер в беседе с человеком обмануть собеседника, заставив поверить в то, что он является человеком, а не машиной.

Тест Тьюринга – полезный инструмент для понимания уровня сложности компьютера, но его результаты могут сказать нам только то, что компьютер научился эффективно имитировать поведение человека. В действительности, это ничего не говорит нам о том, думают ли компьютер или обладает определенной степенью сознательности.

Первыми исследователями вычислительных систем, высказавшихся о разумности компьютера в 40-х годах, были – Walter Pitts и Warren McCulloch. Pitts и McCulloch изучали, как функционирует нейронная активность в человеческом мозге и пытались создать цифровую модель, которая позволила бы компьютеру обладать такими человеческими способностями, как зрение, слух и распознавание речи. По сути, они пытались воссоздать человеческий мозг. Они разработали идею “перцептронов”, т. е. концепцию искусственных нейронов, наслоенных таким образом, что вход может быть введен в один конец системы и идентифицирован как выход. Один перцептрон передавал информацию группе других перцептронов и дальше по линии пока возможный выход не будет достигнут.

Системы, по сути алгоритмы, назывались “нейронными сетями”. Начальный прогресс был весьма обнадеживающим. Но работа над нейронными сетями в конечном итоге зашла в тупик в 1960-х годах, к тому же исследователь Марвин Мински усомнился, что реализация модели перцептронов была хоть сколько-нибудь возможна, учитывая технологии, доступные в то время. Марвин Мински утверждал, что модель нейронной сети нуждается в слишком высокой вычислительной мощности и она не решает фундаментальных проблем создания компьютера, который бы обладал здравым смыслом и мог рассуждать на уровне человека.

Более того, Hans Moravec (in “Moravec’s Paradox”) в 1980-х заявил, что

“сравнительно легко заставить компьютеры демонстрировать производительность на уровне взрослого человека в тестах на интеллект и в игре в шашки, но очень трудно или практически невозможно наделить их навыками годовалого ребенка, когда заходит речь о восприятии и мобильности”

По сути, это значит, что относительно легко конструировать компьютеры, которые обладают превосходными логическими способностями (например, умение играть в шахматы), но невероятно сложно создавать компьютеры, которые могли бы демонстрировать человеческую физическую активность и восприятие. Поэтому, исследования ИИ вступили в один из двух периодов так называемого “разочарования”, прозванных в среде ученых “ИИ Зима”. Финансирование иссякло, прогресс замедлился, поэтому фокус внимания переместился на другие области информатики. Первая “ИИ Зима” длилась с 1970-х до середины 1980-х, вторая с 1990-х по примерно 2010-е.

Новый золотой век ИИ

Термин “искусственный интеллект” в наше время считается немного неправильным. Он существует скорее как общее определение для нескольких видов технологий, наделяющих компьютеры и механизмы более интеллектуальными возможностями.

Современный ИИ включает в себя множество разных методов, которые позволяют расширить спектр возможностей компьютера. Например, машинное обучение, глубокое обучение, big data, нейронные сети, когнитивные вычисления и другие. Современный ИИ – это ответ на вопрос “что случится, если предоставить машине бесконечную вычислительную мощность и бесконечные данные?”

Несмотря на то, что нам говорит научная фантастика, ответ на этот вопрос не приводит и не приведет к появлению роботов-повелителей (по крайне мере, не в буквальном смысле). Практическое использование искусственного интеллекта сегодня сводится к упрощению множества задач для различных компаний и организаций. С коммерческой точки зрения, машинное обучение часто используется для решения проблемы персонализации, вроде более таргетированной рекламы или улучшенной рекомендательной системы. В мире существует так много данных, что справиться с таким объемом информации можно только при помощи машин, использующих интеллектуальные алгоритмы, помогающие людям принимать решения.

Но что насчет компьютеров, которые могут видеть, слышать и понимать. Большинство передовых исследований в области искусственного интеллекта выполняются с помощью нейронных сетей. Различные виды нейронных сетей (сверточные нейронные сети, рекуррентные нейронные сети, цепь Маркова, долгая краткосрочная память, генеративно-состязательная сеть и др.) используются такими компаниями, как Google, Microsoft, Facebook, IBM с целью корректной идентификации изображений, речи или текста. К примеру, Microsoft создала микросхемы (программируемая пользователем вентильная матрица – FPGA) с алгоритмами, способными перевести всю Википедию за считанные секунды.

Каждый день вы используете разные виды технологий машинного обучения. Когда вы пользуетесь поисковиком Google (data mining, оптимизация и персонализация) или задаете вопрос Siri на своем IPhone (распознавание речи). Интересные разработки были произведены в области дополненной реальности – наслаивание цифрового контента поверх физического мира. Индустрия движется по направлению к автоматизации, когда компьютеры анализируют данные и на их основе принимают решения за доли секунды, в то время как у человека на подобную деятельность могут уходить недели. То, что мы в данный момент считаем искусственным интеллектом, есть повсюду.

Но впереди еще долгий путь, даже для решения самых элементарных проблем. Одно из интересных нововведений – это освещение. Facebook использует нейронные сети, чтобы научить компьютеры понимать, как человек двигается на фотографиях и видео, в практике это называют “распознаванием позы”.

Подумайте об этом немного. Нам нужно научить компьютеры понимать, сидит ли в данный момент человек или стоит, машет руками или идет. Это то, на что способен интеллект двухгодовалого ребенка. Несмотря на всю свою мощь и потрясающие способности, основанные на логических вычислениях, машины не настолько умны, особенно что касается познания и восприятия на человеческом уровне. Машины не могут брать на себя ответственность. По крайне мере, не в ближайшее время.

Ближайшее будущее ИИ

Люди мечтают о Сингулярности, моменте, когда компьютеры обретут сознательность и интеллект уровня человека (или выше) и начнут развиваться и размножаться самостоятельно. То, что произойдет дальше оставлено на ум футуристов, программистов, писателей и сценаристов. Идея разумных компьютеров – глобальная и комплексная, лучше подойдет для другой статьи. Лучше сказать, на данный момент, мы понятия не имеем, как создать разумную машину или даже приблизиться к реализации модели искусственного интеллекта, который можно определить как способность компьютера выполнять любую интеллектуальную задачу, которую может выполнить человек. Всякая научная фантастика, которую вы смотрите или читаете, рассказывает о разумном, сознательном компьютере, обходя проблемы современной компьютерной науки и нейробиологии, чтобы создать живых машин, как будто с помощью какой-нибудь магии. Очень немногие произведения научной фантастики описывают процесс создания ИИ, большинство же просто перескакивают на последствия.

Таким образом, если мы не знаем, как построить сознательный компьютер, возникает более уместный вопрос: “Во что превратится ограниченная функциональность современного ИИ в ближайшие годы?”

Ускорение темпов развития ИИ, как мы теперь понимаем, будет ключом к концу “Информационной” эпохи и началу “Автономной” эпохи. Если грубо обобщить, то “Информационная” эпоха началась с появления печатного станка в 1450 году, который помогал распространять знания и информацию по всему миру. Теперь у нас есть устройства, которые мы носим в кармане и которые могут получить доступ к любому виду данных в течения нескольких секунд или связаться с кем-либо в мире. Это логическое завершение Информационной эпохи.

Следующая эпоха будет той, где наши компьютеры и машины выполняют для нас задачи, основываясь на принципах оптимизации и эффективности, основываясь на огромных объемах данных и эмпирических наблюдениях. Назовите любую форму человеческой деятельности, о которой вы только можете подумать, и вы увидите способ, по которому алгоритмы смогут ее усовершенствовать. И еще, каждая отдельная машина будет ограничена в своих возможностях. Алгоритм, разработанный, например, для сбора урожая не сможет развернуться и выполнить оптимизацию контент-маркетинга. Ближайшее будущее (следующие пятьдесят лет, по крайне мере) будет наполнено множеством узкоспециализированных ИИ, выполняющих конкретные задачи. Создание искусственного интеллекта, который мог бы выполнять множество разнообразных видов задач (что было бы предпосылкой появления искусственного чувства), будет осуществлено уж точно не при нашей жизни.

Примечание

Автор статьи: Dan Rowinski (technology journalist).

Источники:
http://habr.com/ru/post/474196/
http://dtf.ru/science/41917-sovremennoe-sostoyanie-iskusstvennogo-intellekta
http://www.performance-lab.ru/blog/primenenie-iskusstvennogo-intellekta-v-testirovanii-po

Ссылка на основную публикацию